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CRITERIA FOR EVALUATING THE ACCURACY
OF SURFACE TENSION VALUES FROM DIGITAL
VISION SYSTEMS

Y. Z. Zhou
J. Gaydos
Department of Mechanical & Aerospace Engineering,
Carleton University, Ottawa, Canada

Experimental techniques for measuring surface tension using the shape of either
axisymmetric sessile or pendant drops have existed for many years. Recent devel-
opments in digital image acquisition and processing have permitted the computer-
ization of the process, by which the coordinates of the drop’s edge profile are
obtained. Algorithms like the axisymmetric drop shape analysis�profile
(ADSA�P) program use the edge profile coordinates to estimate quantities such
as the surface tension, drop volume, and contact angle. The precision of these esti-
mated quantities depends on various effects that influence the accuracy by which
the edge profile coordinates are acquired. We have modeled this uncertainty in
coordinate information as a perturbation effect and related the size of the pertur-
bation to the surface tension accuracy. Two analogous relations were used to set
regions of surface tension accuracy, e.g., �0:01mJ=m2 or 0:01mJ=m2 as functions
of the magnification of the drop, CCD camera array size, pixel size, drop shape,
and drop edge precision. An algorithm for the design of various vision systems
based on these criteria will be discussed and illustrated.
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INTRODUCTION

There are numerous methodologies for the measurement of contact
angles and surface tensions. One of the most common methods for
obtaining the interfacial tension and contact angle is based on the
shape of a sessile or pendant drop. For example, the axisymmetric
drop shape analysis�Profile (ADSA�P) algorithm and program of
Rotenberg et al. [1, 2] use the edge profile coordinates of the drop
to estimate quantities such as surface tension, drop volume, and
contact angle. The precision of these estimated quantities depends
on the accuracy of the drop’s edge profile coordinates as acquired
by the ADSA-P program. One method for acquiring the edge profile
coordinates involves digital image acquisition, whereby the drop’s
image is acquired by a charge coupled device (CCD) camera and
the light intensity distribution recorded on the CCD is used to deter-
mine the drop’s edge profile and corresponding spatial coordinates.
Any uncertainty in the vision system will affect the accuracy of
the drop’s profile coordinates and the precision of the surface tension
[3]. Thus, to quantify the uncertainty of the digital vision system
and to obtain a precision for the surface tension we will (1) estimate
the experimental surface tension precision for an arbitrary vision
system and (2) detail the methodology for the design of a vision
system.

The ADSA�P methodology has been used in this article because
software source code is available in the public domain [4] and because
the ADSA�P program has been used by a number of researchers over
a period of time and its reliability is well established. Extensive
research developing ADSA�P as an effective tool [5�7] and using it
in studies of protein adsorption [8], the wetting behaviour of poly(alkyl
methacrylate) polymers [9], dynamic contact angles [10], and line ten-
sion [11�15] have occurred under the direction of or in collaboration
with A. W. Neumann. Interesting and novel applications of ADSA�P
have also occurred elsewhere, including a droplet evaporation study
[16], an investigation of adsorbed protein layers by low-rate, dynamic
liquid-fluid contact angles [17] and by analyzing bubble shapes at a
water�air interface [18, 19], and the influence of binding hexadecyltri-
methylammonium bromide to starch polysaccharides [20]. An evalu-
ation of miscibility conditions for the Terra Nova oil pool, which is
the second-largest oil pool discovered under the Grand Banks of the
Canadian east coast, has used ADSA�P as a tool to determine interfa-
cial tension data and to establish oil recovery selection criteria [21].
As a final example of the scope of ADSA applications, we men-
tion the interesting study of spreading rate measurements for the
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characterization of clinical treatments of grinding, acid etching, and
deproteinization on medical dentin tissue [22].

The numerical integration of the Laplace equation of capillary to
determine the shape of either a pendant or sessile drop is possible
when values of the surface tension or capillary constant and the radius
of curvature of the drop at the origin are provided [23]. In all cases, the
origin is taken as the location where the drop’s principal radii are
equal and R1¼R2¼R0. This integration permits one to create a theore-
tical=numerical drop edge profile or set of profile coordinates without
any experimental errors. As shown below, the magnitude of typical
numerical errors are orders of magnitude below the magnitude of typi-
cal experimental errors (e.g., for pure water at 20�C experimental
errors for surface tension range from a low of �0:08mJ=m2 to
�0:5mJ=m2Þ. If this numerical profile is perturbed (as described
below) and the set of perturbed profile coordinates are used as input
to the ADSA�P program (or any similarly designed software package
that uses drop edge or profile points), then it is possible to estimate the
relation between size of profile perturbation (detailed in several ways
below) and the surface tension deviation, Dc, that results from the per-
turbation. For area array CCD cameras with 106 pixels or more, the
magnitude of the perturbation can be characterized in terms of pixels,
so that there is a direct connection between the CCD pixel array size
and the smallest possible surface tension uncertainty, Dc.

In this article, by combining the numerical solution of the Laplace
equation of capillary and the ADSA�P method, we were able to
develop (1) a perturbation model to simulate the uncertainty in the
profile coordinates and then to relate the size of the perturbation to
the best surface tension precision possible and (2) two analogous rela-
tions that set regions of surface tension accuracy, e.g., �0:01mJ=m2 or
�0:1mJ=m2 as functions of the magnification of the drop, CCD camera
array size, pixel size, drop shape, and drop edge precision. Finally, an
algorithm for the design of a vision system based on this criterion will
be discussed.

THE LAPLACE EQUATION OF CAPILLARITY FOR
AXISYMMETRIC DROPS

The shape of a drop is a balance between surface tension and gravity,
and this balance is reflected by the Laplace equation of capillary, given
by

c
1

R1
þ 1

R2

� �
¼ c

dh
ds

þ sin h
x

� �
¼ 2c

R0
� Dqgz; ð1Þ
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when the interface is symmetric about the vertical z axis and the prin-
cipal radii of curvature, R1 and R2, are related to the arc-length, s, and
the angle of inclination of the interface to the horizontal through the
turning angle, h [23]. Thus, for given values of c and DP0 ¼ 2cR0, the
shape of a drop can be determined. The inverse—determination of
the interfacial tension, c from the shape—is also possible [1, 2]. This
equation can be expressed in dimensionless form using the capillary
constant c, defined by c ¼ Dqg=c, to write Equation (1) as

dh
dS

¼ 2

B0
þ Z� sin h

X
; ð2Þ

where the dimensionless lengths are defined as

S ¼ sc
1
2; X ¼ xc

1
2; Z ¼ zc

1
2; B0 ¼ R0c

1
2: ð3Þ

A procedure to perform this numerical integration using the dimen-
sionless arc length, S, was established by Hartland and Hartley [23]
and will be used to establish an ideal or perfect axisymmetric drop
shape prior to any perturbation.

In the ADSA�P algorithm an objective function, defined as a mea-
sure of the absolute normal distance between the n input coordinates
un (either experimental or numerical) and the corresponding axisym-
metric Laplacian curve, v, determined uniquely by the parameters
R0 and c, is minimized as the criterion for determining a suitable fit
between the input profile data points and the Laplacian curve (i.e.,
the curve represents an acceptable solution to Laplace’s equation of
capillarity for axisymmetric drops) [1, 2].

MODELLING THE DISTRIBUTION OF DROP EDGE
PERTURBATION LENGTHS

A model algorithm was developed to perturb an ideal drop profile
(obtained as a numerical solution to the axisymmetric Laplace equa-
tion of capillarity) and to determine the distribution of normal dis-
tances between the two profiles (ideal and perturbed). In a physical
sense, a perturbation of the edge profile may come from any uncer-
tainty within the experiment and was used as a means to simulate
these experimental uncertainties so that their influence on other para-
meters such as the surface tension could be quantified. This know-
ledge may help in the design of an experimental system or with
the estimation of the precision by which various parameters can be
determined by the experimental system.
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The Laplace equation of capillarity in the form given by Equation
(2) permits one to determine the theoretical edge profile of an axisym-
metric sessile or pendant drop. An extended precision program based
on the algorithm of Hartland and Hartley [23] was developed to obtain
a numerical solution to Laplace’s equation of capillarity. This program
will be referred to herein as the Laplace program and is available from
the authors. This Laplace program was used to create an accurate
initial drop profile (as illustrated in Figure 1 for a sessile drop). The
initial profile served as a reference profile (denoted herein as Pro-
file_0) for comparison with the perturbed profile. Profile_0 was a func-
tion of the density difference across the interface, Dq, surface tension,
c, and the radius of curvature of the apex of the drop, R0. This apex
point occurs at the top of a sessile drop or the bottom of a pendant
drop. Alternatively, one can define a capillary constant, c, whereupon
Profile_0 becomes a function of c, c, and the dimensionless apex radius,

FIGURE 1 Axisymmetric sessile drop profile coordinates in dimensionless
vertical and horizontal units as generated by the Laplace program using a sur-
face tension of 72mJ=m2. The Laplace program commences the integration of
the solution from the origin (top of the sessile drop) and it stops when the turn-
ing angle (or contact angle) reaches 180�. Any surface tension input or final con-
tact angle is possible. An initial profile (Profile_0) and a perturbed profile
(Profile_1) are shown with their distinct termination points. In order to compare
the two drop profiles, Profile 1 must be shifted upwards by a distance, Zshift, so
that the two drops have identical termination elevation (or Z coordinates).
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B0 ¼ R0
ffiffiffi
c

p
. A weakly perturbed profile was obtained using the Laplace

program to alter B0 and c according to the expressions

eBB0 ¼ B0 þ dB0; provided
dB0

B0

���� ���� << 1; ð4Þ

ecc ¼ cþ dc; provided
dc
c

���� ���� << 1: ð5Þ

This perturbed profile, referred to as Profile_1, is illustrated in
Figure 1. As a result of the numerical integration procedure, the initial
and the perturbed profiles (i.e., Profile_0 and Profile_1) do not have the
same termination point or final end point. Consequently, to permit a
comparison between the two profiles it was necessary to shift Profile_1
by a small vertical displacement to ensure that the end points of both
profiles occur at the same horizontal elevation (distance Zshift in
Figure 1 is accentuated for illustrative purposes). In a physical sense,
this shift ensures that one compares two drops supported by the same
horizontal substrate (sessile drop situation) or suspended by the same
vertical tube (pendant drop situation). We denote Profile_1 after the
suitable vertical shift as Profile_2 (see Figure 2). Once again, various
dimensions in Figure 2 have been accentuated in scale. Comparison
of Profile_0 with Profile_2 yields the distribution of normal pertur-
bation lengths, k, as a function of B0, c, and the arc-length, s, or the
turning angle, h; that is, the function k ¼ f B0; c; h; or sð Þ as shown in
either Figure 2 or Figure 3. If we denote kmax as the absolute maximum
physical perturbation length for the whole arc length of the drop, then
the dimensionless perturbation-length ratio, k̂k, can be defined as the
ratio

k̂k ¼ k
kmax

; ð6Þ

where 0 � k̂k � 1 and kmax ¼ maxfk; for 0 < s � smax or 0 < hl � pg. An
analogous ratio can be defined for the dimensionless arc length, ŝs, as

ŝs ¼ s

smax
; ð7Þ

where smax represents the maximum arc length value for the numerical
integration. Thus, for integration points at positions si, one defines
smax ¼ maxfsi; for all ig. Subsequently, one may generate the function
k̂k ¼ f B0; c; h; or ŝsð Þ or k̂k ¼ f B0; c=DqgR2

0; h; or ŝs
� �

for the dimension-
less perturbation length ratio. This distribution, k̂k, provides one with
a new way to predict the displacement of the edge profile of a drop based
on the original edge profile while maintaining a physically realistic
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result (i.e., perturbed shape is a solution to Equation (1)). Thus, if a set
of edge profile coordinates X0

i ;Z
0
i

� �
is given, then it is possible to

create a new set of perturbed edge profile coordinates ð eXXi; eZZiÞ via simple
relations,

eXXi ¼ X0
i þ dXi with dXi ¼ ki cos h; ð8Þ

eZZi ¼ Z0
i þ dZi with dZi þ ki sin h; ð9Þ

where ki ¼ k̂kikmax; and k̂ki is obtained from a calculation that produces
data such as that shown in Figure 3. Boundary conditions apply such
that dX ¼ 0 at the apex point (to keep the profile axisymmetric) and
dZ ¼ 0 at the contact point (to keep the sessile drop in contact with
the substrate). It is important to note that these new profile coordi-
nates,

� eXXi; eZZi

�
, will still satisfy the Laplace equation of capillary and

are, therefore, physically realistic solutions for a drop. The original
edge profile

�
X0

i ;Z
0
i

�
may be obtained from either a numerical inte-

gration of the Laplace equation of capillary or obtained from the image

FIGURE 2 Figure 1 sessile drop profile coordinates in dimensionless vertical
and horizontal units as generated by the Laplace program using a surface ten-
sion of 72mJ=m2 after the Zshift vertical upward shift of Profile_1. The apex
points (denoted by A0 and A) of the two drops have the same radial coordinate,
and the termination points or contact points (denoted by C0 and C) have the
same vertical coordinate. The maximum physical distance between the two
profiles occurs at the equator point B0 to B.
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representation of the drop’s edge. This perturbation modelling pro-
vides us with an accurate means of moving from an arbitrary but
known edge profile to an adjacent profile that is either a slight expan-
sion or contraction. Figures 3 through 8 illustrate various k̂k distribu-
tions that will be discussed below. In the next section we evaluate
the accuracy or precision of the perturbation modelling technique.

EVALUATION OF THE PERTURBATION MODELLING
APPROACH

An unperturbed set of profile coordinates can be created by the
Laplace program and used as input to the ADSA�P program.
ADSA�P uses these coordinates to estimate quantities such as the
surface tension. When the original set of coordinates are used as input
to ADSA�P, one should—and one does—recover the same value of
surface tension as used as input to the Laplace program. Thus, if we
perturb the original profile coordinates and use this perturbed set of
coordinates as input to ADSA�P, then we will be able to estimate

FIGURE 3 The dimensionless perturbation length ratio, k̂k, as a function of
the dimensionless arc length, ŝs for various nonspherical sessile drops. The ref-
erence or unperturbed drop was taken as a drop with a surface tension
c ¼ 72mJ=m2 and a dimensionless apex curvature of B0 ¼ 2. Curves for
dimensionless apex curvatures of 0.8, 2, 5, 10, and 20 are provided.
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the effect of profile coordinate uncertainty on the estimated surface
tension value. We use this procedure to establish a connection between
edge detection uncertainty and surface tension accuracy. It is impor-
tant to recognize that our methodology is completely general and
can be applied to any software package (not just ADSA�P). First,
we evaluate the consistency of the Laplace program and the ADSA�P
program using the algorithm diagrammed below. Quantities of signifi-
cance in the algorithm are:

B0j0Laplace: input value to Laplace program

cj0Laplace: input value to Laplace program

P0 X0
i ;Z

0
i

� �
: profile output from Laplace program based on input

values of B0j0Laplace and cj0Laplace
B0j0ADSA: output from the ADSA�P program based on input profile

P0 X0
i ;Z

0
i

� �
cj0ADSA: output from the ADSA�P program based on input profile

P0 X0
i ;Z

0
i

� �

In theory the following equalities should be satisfied:

B0

��0
ADSA

¼ B0

��0
Laplace

; ð10Þ
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c
��0
ADSA

¼ c
��0
Laplace

: ð11Þ

Table 1 illustrates this comparison.1 Values of B0 and c were
used as input to the Laplace program to create a set of edge profile

coordinates X0
i ;Z

0
i

� �
. These coordinates were then used as input to

the ADSA�P program to determine B0 and c values. We used 36
points (the number of points is arbitrary but should be even if
the total number is small to insure the profile is axisymmetric) plus
one point at the drop’s apex in all profiles [2]. As shown in Table 1,
ADSA�P correctly determines B0 and c values to five digits from
the numerically accurate profile coordinates. Several Fortran compi-
lers on different OS platforms were used to establish this accuracy.
The compilers included: Absoft Fortran v.5.1 from Absoft Inc., G77
Fortran from the Free Software Foundation (GNU) on a WinNT
4.0 OS, and F77 on SUN UNIX. The accuracy could be slightly
improved if the number of points in the profile input were increased
beyond 37. Typically, experimental values of surface tension have
either 2 or 3 digits of accuracy, so a surface tension value of
72.1mJ=m2 is not significantly different from a value of 72.0mJ=m2.
Table 1 indicates that the numerical integration of the Laplace pro-
gram of capillarity (our Laplace program) was able to produce a suf-

ficiently accurate set of profile coordinates X0
i ;Z

0
i

� �
, and that the

TABLE 1 Comparison of ADSA�P Program Estimates of B0 and c Using 37
Numerically Generated Profile Coordinates from an Integration of the Laplace
Equation of Capillary (Using the Laplace Program)

Case Parameters Laplace program ADSA program

1 B0 0.4 0.400103
c 72 72.016975

2 B0 0.8 0.800010
c 72 72.008894

3 B0 2 2.000102
c 72 72.004280

4 B0 10 10.000207
c 72 72.000683

5 B0 20 20.001356
c 72 71.997939

Surface tension, c, in units mJ=m2 with B0 dimensionless.

1All example data are based on a pure water sessile drop: Dq ¼ 1000kg=m3;

g ¼ m=s2; c ¼ 72mJ=m2.
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ADSA�P program was able to obtain consistent values of B0 and c
from these profile coordinates. If B0 and c are altered by small
increments dB0 and dc, so that the new values becomeeBB0 ¼ B0 þ dB0 and ~cc ¼ cþ dc, then these new values can be used
as inputs to the Laplace program to obtain a new set of coordinates,
Xi;Zið Þjnew. If this set of coordinates is used as input to ADSA�P,

then ADSA�P will produce consistent values of eBB0 and ~cc to the sug-
gested numerical accuracy of Table 1. The left hand side of the flow
chart below illustrates the evaluation procedure and the block
location where the perturbation distribution (discussed below) is
obtained as a comparison between the two coordinate profiles (i.e.,

original and perturbed profile using input eBB0 and ~cc). Alternatively,
if the original set of profile coordinates is adjusted using the pertur-

bation distribution ki ¼ k̂kikmax instead, then the adjusted coordinates

can be inserted into ADSA�P and adjusted values of eBB0

��ADSA

Perturbed
and

~cc
��ADSA

Perturbed
can be obtained for comparison. Quantities of significance

in flow chart are:

B0j0Laplace; cj
0
Laplace: Original values input to the Laplace program to gen-

erate original profile with profile coordinates X0
i ;Z

0
i

� �
.

P0ðX0
i ;Z

0
i Þ: Original set of coordinate profile points based on input

values B0j0Laplace ; cj0Laplace.eBB0jLaplace, ~ccjLaplace: Perturbed values input to the Laplace program.ePPjLaplaceð eXXijLaplace; eZZijLaplaceÞ: New set of profile coordinate points output

from the Laplace program based on perturbed values ~BB0jLaplace and
~ccjLaplace.eBB0

��ADSA

Unperturbed
, ~cc
��ADSA

Unperturbed
: Values output from ADSA�P based on input

profile coordinates ePPjLaplaceð eXXijLaplace; eZZijLaplaceÞ where the ‘‘unper-

turbed’’ subscript indicates that coordinates were obtained without
invoking a small perturbation on the original set of coordinate
points.ePPjADSAð eXXijADSA;

eZZijADSAÞ: New set of perturbed profile coordinates

obtained by perturbing the original drop profile, P0 X0
i ;Z

0
i

� �
, using

the perturbation length distribution k̂k ¼ f B0; c; h or ŝsð Þ.eBB0

��ADSA

Perturbed
, ~cc

��ADSA

Perturbed
: Values output from ADSA�P based on input

drop profileePPjADSAð eXXijADSA;
eZZijADSAÞ.
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As we now know, based on any original profile,ePPjLaplaceð eXXijLaplace; eZZijLaplaceÞ ADSA�P will be able to obtain values of
~BB0

��ADSA

Unperturbed
and ~cc

��ADSA

Unperturbed
that are numerically similar to the values

of ~BB0jLaplace and ~ccjLaplace used as input to the Laplace program
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(a numerical integration scheme for the Laplace equation of
capillarity). Next, we perturb an original coordinate profile, denoted
as P0 X0

i ; Z0
i

� �
and numerically generated using values B0jLaplace and

cjLaplace, to obtain a perturbed profile, denoted asePPjADSAð eXXijADSA;
eZZijADSAÞ, using the perturbation length distribution,

k̂k. After these perturbed profile coordinates were used as input to

ADSA�P, we obtained from ADSA�P estimated values of eBB0

��ADSA

Perturbed

and ~cc
��ADSA

Perturbed
. If our perturbation length distribution procedure was

correct, then ADSA�P should estimate values of eBB0

��ADSA

Perturbed
and

~cc
��ADSA

Perturbed
, based on the input edge profile coordinates

~PPjADSA ð eXXijADSA;
eZZijADSAÞ, which are numerically equal to eBB0

��ADSA

Unperturbed

and ~cc
��ADSA

Unperturbed
. The perturbation length distribution, k, and its absol-

ute maximum value, in particular, kmax, provide the connection be-

tween the edge detection uncertainty and a robust estimation of the

surface tension uncertainty. Tables 2 and 3 illustrate the level of con-

sistency between sets
� eBB0jLaplace;eccjLaplace�, � ~BB0

��ADSA

Unperturbed
; ecc��ADSA

Unperturbed

�
,

and
� eBB0

��ADSA

Perturbed
; ~cc
��ADSA

Perturbed

�
. Tables 2 and 3 were based on a fixed value

of surface tension, c ¼ 72 mJ=m2, and various values of B0 from 0.4 to

20. All examples were based on a sessile drop configuration. An anal-

ogous comparison procedure was possible for the pendant drop configur-

ation or for significantly different values of the surface tension.
These tabulated results in Tables 2 and 3 demonstrate that the

ADSA�P program yields essentially the same (i.e., results depend

TABLE 2 Perturbed Original Profile P0 X0
i ;Z

0
i

� �
, Based on Input Values of

B0 ¼ 0:4 and c ¼ 72 mJ=m2, to ePPjADSAð eXXijADSA;
eZZ��

ADSA
Þ

Laplace
programeBB0jLaplace;~ccjLaplace

ADSA�P
programeBB0jADSA

Unperturbed;~ccj
ADSA
Unperturbed

ADSA�P
programeBB0jADSA

Perturbed;~ccj
ADSA
Perturbed

1 B0 0.4001 0.4002028 0.4002034
c 71.9 71.9177982 71.9172713

2 B0 0.401 0.4011028 0.4011069
c 71.9 71.9177520 71.9204939

3 B0 0.402 0.4021030 0.4021108
c 71.8 71.8177298 71.8247887

4 B0 0.404 0.4041034 0.4041183
c 71.6 71.6176628 71.6357604

Table shows that ADSA�P provides consistent values of ð eBB0jADSA
Perturbed,eccjADSA

PerturbedÞ; ð eBB0jADSA
Unperturbed, ~ccj

ADSA
UnperturbedÞ with ð eBB0jLaplace;~ccjLaplaceÞ:
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slightly on the actual number of profile points) set of eBB0 and ~cc values
regardless of the method used to create the input edge profile coordi-
nates. Therefore, it would seem reasonable to conclude that the
method used to create a perturbation length distribution, k, is reason-
able when combined with an initial unperturbed set of profile coordi-
nates to generate a new set of perturbed profile coordinates. It is
also reasonable to view these k perturbations as being mechanically
consistent with the physically expected result that an equilibrium
drop should satisfy the Laplace equation of capillarity during a pertur-
bation. When the sessile drop is either too small (nearly spherical) or
too large (nearly flat) the utility of the ADSA�P routine suffers and we
must obtain the perturbation length distribution from limiting ana-
lytical solutions. These two limiting situations are discussed below.

Analytical Solutions for the Situation of Either Extremely
Large or Extremely Small Sessile Drops

Two possible types of solutions exist and will be discussed below. One
solution relates to extremely large, flat drops with large values of B0

and the other solution to extremely small, nearly spherical drops with
small values of B0. Our purpose is to derive analytical solutions for the
dimensionless perturbation length ratio k̂k ¼ f B0; c; hl; or ŝsð Þ; see
Figures 4 and 5. The analytical solutions were used to confirm (see
Tables 4 and 5) that the numerical scheme was sufficiently accurate
(at least four significant digits) to be used as a tool for estimating

TABLE 3 Perturbed Original Profile P0 X0
i ;Z

0
i

� �
, Based on Input Values of

B0 ¼ 20 and c ¼ 72 mJ=m2, to ePPjADSAð eXXijADSA;
eZZijADSAÞ

Laplace
program

~BB0jLaplace;~ccjLaplace

ADSA�P
program

~BB0jADSA
Un�perturbed;~ccj

ADSA
Un�perturbed

ADSA�P
program

~BB0jADSA
perturbed;~ccj

ADSA
perturbed

1 B0 20.1 20.1008565 20.0988352
c 71.9 71.8992135 71.9060320

2 B0 20.2 20.2008691 20.1949812
c 71.8 71.7991985 71.8181138

3 B0 20.4 20.4009431 20.3831201
c 71.6 71.5990512 71.6541901

4 B0 21 21.0010250 20.9129130
c 71 70.9989628 71.2537498

Table shows that ADSA�P provides consistent values of
� eBB0jADSA

Perturbed; eccjADSA
Perturbed

�
,� eBB0jADSA

Unperturbed; eccjADSA
Unperturbed

�
with

� eBB0jLaplace; eccjLaplace�:
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FIGURE 4 Dimensionless perturbation length ratio, k̂k , as a function of the
dimensionless arc length for very small, essentially spherical sessile drops.
The two curves illustrate the influence of the dimensionless radius of curva-
ture at the drop’s apex (denoted by B0 ¼ 0.1 or 0.01).

FIGURE 5 Dimensionless, normal perturbation length ratio, k̂k , as a function
of the dimensionless arc length, ŝs, for large, nonspherical, flat sessile drops.
The curves illustrate the influence of the dimensionless radius of curvature
at the drop’s apex (denoted by B0 values 50, 100, etc.).
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digital uncertainty (see Discussion of the Normal Perturbation Length
Distribution, section below).

Limiting Solution for a Large Curvature Drop

If we rewrite Equation (2) as

1

X

d

dX
ðX sin hÞ ¼ 2

B0
� Z; ð12Þ

then the integration of Equation (12) yields

X sin h ¼ X2

B0
�
ZX
0

ZXdX; ð13Þ

Very small (large curvature) sessile and pendent drops are very
nearly spherical, and the gravitation term in the pressure balance
can be neglected without substantial error when B0 is small. As a
consequence, the term 2=B0 in Equation (12) is much greater than Z
and the drop is essentially spherical (or circular with radius B0 in a

TABLE 4 The Edge Profile Coordinates ðX0
i ;Z

0
i Þ Were Determined Using the

Laplace Program with B0 ¼ 100 and, the Coordinates ðX1
i ;Z

1
i Þ Were Deter-

mined Similarly with eBB0 ¼ 105

hi X0
i Z0

i X1
i Z1

i dXi ¼ X1
i � X0

i

10 3.868812Eþ00 1.830021E�01 3.922605Eþ00 1.834381E�01 5.379272E�02

20 4.606206Eþ00 3.726210E�01 4.659513Eþ00 3.729320E�01 5.330706E�02

30 5.009408Eþ00 5.577508E�01 5.062461Eþ00 5.579455E�01 5.305290E�02

40 5.268285Eþ00 7.374265E�01 5.321188Eþ00 7.375173E�01 5.290270E�02

50 5.442418Eþ00 9.104621E�01 5.495229Eþ00 9.104613E�01 5.281067E�02

60 5.558694Eþ00 1.075630Eþ 00 5.611448Eþ00 1.075549Eþ 00 5.275440E�02

70 5.631881Eþ00 1.231728Eþ 00 5.684603Eþ00 1.231580Eþ 00 5.272198E�02

80 5.671247Eþ00 1.377621Eþ 00 5.723954Eþ00 1.377416Eþ 00 5.270672E�02

90 5.683229Eþ00 1.512259Eþ 00 5.735932Eþ00 1.512009Eþ 00 5.270290E�02

100 5.672676Eþ00 1.634696Eþ 00 5.725381Eþ00 1.634412Eþ 00 5.270529E�02

110 5.643487Eþ00 1.744110Eþ 00 5.696199Eþ00 1.743803Eþ 00 5.271149E�02

120 5.598973Eþ00 1.839809Eþ 00 5.651690Eþ00 1.839489Eþ 00 5.271721E�02

130 5.542051Eþ00 1.921242Eþ 00 5.594772Eþ00 1.920917Eþ 00 5.272102E�02

140 5.475375Eþ00 1.988010Eþ 00 5.528094Eþ00 1.987687Eþ 00 5.271864E�02

150 5.401407Eþ00 2.039867Eþ 00 5.454116Eþ00 2.039551Eþ 00 5.270863E�02

160 5.322462Eþ00 2.076725Eþ 00 5.375150Eþ00 2.076418Eþ 00 5.268860E�02

170 5.240732Eþ00 2.098658Eþ 00 5.293390Eþ00 2.098359Eþ 00 5.265808E�02

180 5.158308Eþ00 2.105892Eþ 00 5.210924Eþ00 2.105597Eþ 00 5.261612E�02

The difference dXi ¼ X1
i � X0

i was substituted into Equation (27) to determine dZi. All
quantities are dimensionless including the turning angle h (in degrees) measured from
the horizontal.
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plane that includes the axis of symmetry). Thus, the equation govern-
ing the shape of this circular cross section can be written as

X2 þ Z2 ¼ 2B0Z: ð14Þ

When subjected to a small perturbation, the varied parameters alter
Equation (14) to

ðX þ dXÞ2 þ ðZþ dZÞ2 ¼ 2ðB0 þ dB0ÞðZþ dZÞ; ð15Þ

so that the radial variation is given by

dX � Z

X
dB0 �

Z� B0

X
dZ ð16Þ

and the vertical (along the axis of symmetry) variation by

dZ � Z

Z� B0
dB0 �

X

Z� B0
dX: ð17Þ

TABLE 5 Coordinates ðX0
i ;Z

0
i Þ Were Calculated Numerically Using the

Laplace Program Based on B0= 100

hi Z0
i dZi

eZZi ¼ Z0
i þ dZi Z1

i Error (%)

10 1.830021E�01 4.511449E�04 1.834532E�01 1.834381E�01 8.219289E�03

20 3.726210E�01 3.323153E�04 3.729533E�01 3.729320E�01 5.711031E�03

30 5.577508E�01 2.264479E�04 5.579773E�01 5.579455E�01 5.695740E�03

40 7.374265E�01 1.382043E�04 7.375647E�01 7.375173E�01 6.422463E�03

50 9.104621E�01 6.739189E�05 9.105295E�01 9.104613E�01 7.487056E�03

60 1.075630Eþ 00 1.359895E�05 1.075643Eþ00 1.075549Eþ00 8.745785E�03

70 1.231728Eþ 00 �2.365102E�05 1.231705Eþ00 1.231580Eþ00 1.014013E�02

80 1.377621Eþ 00 �4.508345E�05 1.377576Eþ00 1.377416Eþ00 1.160414E�02

90 1.512259Eþ 00 �5.186920E�05 1.512207Eþ00 1.512009Eþ00 1.310262E�02

100 1.634696Eþ 00 �4.580184E�05 1.634650Eþ00 1.634412Eþ00 1.455669E�02

110 1.744110Eþ 00 �2.944908E�05 1.744081Eþ00 1.743803Eþ00 1.591434E�02

120 1.839809Eþ 00 �6.243262E�06 1.839803Eþ00 1.839489Eþ00 1.707388E�02

130 1.921242Eþ 00 1.950348E�05 1.921262Eþ00 1.920917Eþ00 1.794489E�02

140 1.988010Eþ 00 4.270394E�05 1.988053Eþ00 1.987687Eþ00 1.840134E�02

150 2.039867Eþ 00 5.774879E�05 2.039925Eþ00 2.039551Eþ00 1.833207E�02

160 2.076725Eþ 00 5.892731E�05 2.076784Eþ00 2.076418Eþ00 1.762701E�02

170 2.098658Eþ 00 4.101757E�05 2.098699Eþ00 2.098359Eþ00 1.620288E�02

180 2.105892Eþ 00 1.641347E�11 2.105892Eþ00 2.105597Eþ00 1.402931E�02

Slightly perturbed coordinates ðX1
i ;Z

1
i Þ were calculated numerically using the Laplace

program based on ~BB0 = 105. Values of ~ZZi ¼ Z0
i þ dZi were determined using Equation (58)

to calculate dZi. A comparison of ~ZZi (analytical Equation (27)) with Z1
i (from the Laplace

program with ~BB0 = 105) shows that the results are not significantly different. The error

was calculated using Error ¼ ð ~ZZi � Z1
i Þ
.
Z1
i

� �
� 100

��� ��� in units of percentage. All other

quantities are dimensionless, including the turning angle h (in degrees) as measured
from the horizontal.
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Thus, if we have two similar axisymmetric profiles, one denoted by

P0 X0
i ; Z0

i

� �
and based on B0, and another profile, denoted by

P1 X1
i ; Z1

i

� �
and based on eBB0, such that

dB0 ¼ eBB0 � B0 where
dB0j j
B0j j << 1; ð18Þ

then the vertical distance difference between the profiles would be

dZi ¼ Z1
i � Z0

i : ð19Þ

This result, in combination with Equation (16), can be used to estimate
the point-by-point radial variation, dXi, using relation

dXi �
Z0
i

X0
i

dB0 �
Z0
i � B0

X0
i

dZi: ð20Þ

Analogous comments apply to the use of Equation (17) to estimate the
vertical variation, dZi. Thus, at any point on the profile edge, the
normal distance, ki, between two similar profiles (one profile slightly
perturbed with respect to the other profile) will be given by

ki ¼ dXi cos hþ dZi sin h: ð21Þ

Figure 4 plots the dimensionless normal perturbation length distri-
bution, using Equation (6), for the case of small, nearly spherical
drops.

Limiting Solution for very Flat Drops of Small Contact Angle
and Large Curvature

Differentiating Equation (12) with respect to the dimensionless radial
coordinate, X, and using the approximation that at small angles sin h
is equivalent to tan h permits one to write a Bessel equation and to
obtain the approximate solution [23]

sin h � 2

B0
I1ðXÞ; ð22Þ

where I1ðXÞ is a modified Bessel function of the first kind. The
expression for Z, using the small angle approximation, is obt-
ained as

Z ¼
ZX
0

tan hdX �
ZX
0

sin hdX � 2

ZX
0

1

B0
I1ðXÞdX; ð23Þ
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whereupon

ZðXÞ � 2

B0
½I0ðXÞ � 1�: ð24Þ

The apex radius, B0, can be eliminated from Equation (24),
using Equation (22), to obtain

ZðXÞ � I0ðXÞ � 1

I1ðXÞ sin h: ð25Þ

Equation (25) relates the dimensionless quantities, Z, X, and h,
without the use of any arbitrary constants. It is possible to
obtain an analytical solution, rather than a numerical solution,
for a small perturbation of a large, flat sessile drop whose pro-
file shape is given by either Equation (24) or (25). Using Equa-
tion (24), a vertical perturbation or variation, dZ, will be
connected to variations in curvature, dB0, and radial displace-
ment, dX, via the expression

dZ � 2

B0
I1ðXÞdX � 2

I0 � 1

B2
0

dB0: ð26Þ

The curvature, B0, can be replaced in Equation (26), using
Equation (22), to obtain

dZ � I00I1 � I0I
0
1 þ I0

ðI1Þ2
sin h dX

� sin h 1� I0
I1

� �2

þ I0
XI1

þ I0
I21

� 1

XI1

" #
dX: ð27Þ

At any point on the profile edge, the normal distance between
two similar profiles (one profile slightly perturbed with respect
to the other profile) will be given by Equation (21), and this re-
lation can be used in collaboration with Equation (27) to obtain
an estimate of dZ when dX is varied. A comparison between this
analytical approach and the numerical approach using the
Laplace program demonstrates the consistency of the two
approaches. This comparison is provided in Tables 4 and 5 (with
B0 ¼ 100). These tables illustrate the accuracy of Equation (27)
as a large drop perturbation approximation. The coordinates
for the edge profile tabulated in Table 4 were created by the
Laplace program and then used for comparison with the per-
turbed solutions. Table 5 demonstrates that the perturbation
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expression, Equation (27), is acceptable when modelling the per-
turbation of large drop profiles.

Figure 5 shows this dimensionless perturbation length distribution
for large, flat drops of small contact angle and small curvatures with
B0 values ranging from 50 to 1000 as calculated using Equation (21),
with the definition in Equation (6), and Equation (27).

The analytical solution approach (applicable for either very small
or large drops) permits us to obtain the normal perturbation length
distribution, k̂k ¼ f B0; c; h; or ŝsð Þ, over a large range of B0 values;
i.e., 10�2 � B0 � 103.

DISCUSSION OF THE NORMAL PERTURBATION LENGTH
DISTRIBUTION k̂k

The independent variables of the distribution, k̂k ¼ f B0; c; h; or ŝsð Þ,
have different influences on its shape. Figure 6 illustrates the weak
influence of the surface tension, c, using a sessile drop with
c¼72mJ=m2 and B0¼2 as the reference or unperturbed configuration,
on the distribution’s shape. When c is perturbed to values of 71, 60, 40,
30, and 20mJ=m2, the corresponding Dc changes by 1, 12, 32, 42, and
52mJ=m2, as expected, but the distribution, k̂k, is not changed signifi-
cantly. In contrast, Figure 7 (using the same reference configuration
as in Figure 5) illustrates the strong influence of B0. When B0 is per-
turbed to 2.01, 3, 10, and 20 from its reference situation at B0¼2, the
distribution k̂k has a very different shape in each case. Figure 8 illus-
trates the near-symmetric effect on k̂k of either slightly increasing or
slightly decreasing B0. Essentially one recovers very similar distribu-
tions for expanding and contracting drop situations. One may perturb
a drop shape outward (expansion) by adding the k̂k distribution to the
drop’s profile or inward (contraction) by subtracting the same k̂k distri-
bution from the drop’s profile. Also, the magnitude of k̂k is strongly
influenced by the turning angle, h, or the arc length position, s. When
B0 is small, e.g., 0 < B0 < 1, a perturbation in B0 causes the drop pro-
file to move in a nearly radial fashion (see Figures 3 and 4). As B0

increases, e.g., 1 < B0 < 5, small perturbations produce complicated
profile shapes that are a combination of both vertical and horizontal
shifts (see Figure 3). When B0 is still larger, e.g., B0 > 5, small pertur-
bations cause very small vertical motion [against gravity] and mostly
horizontal movement (see Figures 3 and 5). In conclusion, the normal-
ized perturbation length distribution, k̂k, was primarily influenced by
the size and shape of the drop, as characterized by the variables B0

and h or ŝs, but it was not significantly influenced by the surface tension.
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PREDICTED SURFACE TENSION PRECISION USING THE
PERTURBATION LENGTH DISTRIBUTION

The perturbation length distribution k ¼ k B0; c; h; or sð Þ can be used to
predict the surface tension precision ability of numerical software
packages like ADSA�P. One theoretical drop profile is provided by the
Laplace program (discussed above), which yields a set of very accurate
drop profile coordinates X0

i ; Z0
i

� �
. For this original profile, we know

the quantities B0; c; hfinal; or sfinal, where hfinal is the contact angle for
a sessile drop. If this original profile is perturbed according to the
scheme

eXXi ¼ X0
i þ dX with

dXi

X0
i

���� ���� << 1; ð28Þ

eZZi ¼ Z0
i þ dZ with

dZi

Z0
i

���� ���� << 1; ð29Þ

FIGURE 6 Influence of the surface tension on the dimensionless perturbation
length ratio, k̂k , as a function of the dimensionless arc length, ŝs, for nonsphe-
rical sessile drops. The reference or unperturbed drop was taken as a drop
with a surface tension c ¼ 72mJ=m2and a dimensionless apex curvature of
B0 ¼ 2. Curves for surface tension values of 20, 30, 40, 60, and 71mJ=m2

are provided.

Criteria for Evaluating Accuracy of Surface Tension Values 1037

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



then these perturbations dXi and dZi can be used to obtain new
coordinates for the perturbed drop profile, denoted as ð eXXi; eZZiÞ, and these
profile coordinates can be inserted into the ADSA�P program to obtain a
new, ADSP�P-based estimate of ~cc for the perturbed drop. The surface
tension change will be denoted as

Dc ¼ ~cc� c: ð30Þ

Thus, if we select an original drop shape profile by selecting B0, c and
hfinal or sfinal, then we may use the appropriate perturbation length pro-
file k ¼ k B0; c; h; or sð Þ to perturb the profile coordinates and obtain a
corresponding perturbation, ~cc, for the drop’s surface tension. A sequence
of k functions corresponding to a sequence of larger kmax values will
produce a sequence of ~cc values and a range of Dc. This relation between
kmax (the absolute maximum size of the drop’s profile perturbation) and
Dc (the corresponding shift in surface tension) permits one to access sur-
face tension precision as a function of profile coordinate precision.
Figure 9 plots four sets of surface tension precisions, Dc; that is, surface

FIGURE 7 Influence of the dimensionless apex curvature, B0, on the dimen-
sionless perturbation length ratio, k̂k, as a function of the dimensionless arc
length, ŝs, for nonspherical sessile drops. The reference or unperturbed drop
was taken as a drop with a surface tension c ¼ 72mJ=m2 and a dimensionless
apex curvature of B0 ¼ 2. Curves for dimensionless apex curvatures of 2.01, 3,
10, and 20 are provided.
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tension precisions at values of�1mJ=m2,�0:5mJ=m2,�0:1mJ=m2 and
�0:01mJ=m2 with corresponding absolute maximum perturbation
lengths, kmax, as a function of the dimensionless radius of curvature, B0.

The surface tension change, Dc, is a function of various parameters,
such as B0, c, and the normal perturbation length distribution,
k̂k ¼ k̂k B0; c; h; or ŝsð Þ. The k̂k values plotted in Figure 3 include the full
range of possible sessile drop configurations up to and including the
unphysical contact angle hl ¼ p (or ŝsfinal ¼ 1). The value of the actual
or effective maximum physical perturbation length, keff , for a parti-
cular situation depends on the shape of the drop and the location
where the profile stops. As most sessile drop systems occur for situa-
tions where hl < p; it is necessary to define a factor f,

f ¼ max k̂k ¼ k
kmax

; for 0 � ŝs � ŝsfinal � 1

	 

; ð31Þ

to address this limited turning angle or arc-length situation. This f fac-
tor is restricted to the range 0 � f � 1 because 0 � k̂k � 1; and it changes
drastically with both the location of the final arc length position, sfinal,

FIGURE 8 Influence of either slightly increasing or decreasing the dimen-
sionless apex curvature, B0, on the dimensionless perturbation length ratio,
k̂k , as a function of the dimensionless arc length, ŝs, for nonspherical sessile
drops. The reference or unperturbed drop was taken as a drop with a surface
tension c ¼ 72mJ=m2 and a dimensionless apex curvature of B0 ¼ 2. Curves
for a dimensionless apex curvature of either 1.99 or 2.01 are shown almost
on top of one another.

Criteria for Evaluating Accuracy of Surface Tension Values 1039

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
6
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



and the shape of drop, defined by B0. The final arc length value, sfinal,
will correspond to a contact angle hl < p, and the effective maximum
perturbation length for a particular situation will equal f kmax; that is,

keff ¼ max k; for 0 � s � sfinal � 1
� �

¼ f kmax: ð32Þ

If we consider a sessile drop situation with B0 ¼ 2, then we may con-
trast the effect of changing the contact angle hl on the f factor. When
hl ¼ p or ŝsfinal ¼ 1 (the full,theoretically possible range of values), then
we know f ¼ 1 and keff ¼ kmax somewhere within the arc-length range
0 � ŝs � 1. In fact, keff ¼ kmax or k̂k ¼ 1 occurs at ŝs ¼ 0:69 (see Figure
3). In contrast, when hl ¼ p=18, for example, the keff value (correspond-
ing to a value of k̂k ¼ 0:12 < 1) occurs at ŝs ¼ 0:506, where f ¼ 0.12 (see
Figure 3). Consequently, for this small contact angle drop the maximum
perturbation length displacement of the drop’s profile will occur at the
contact line, and its size will be approximately 1

8 of the size that would
occur for an identically shaped drop (same B0) with a much larger con-
tact angle. Alternatively, for a drop of a particular shape (same B0) we
may interpret these results another way. Since each k̂k curve for fixed B0

is also a reflection of the surface tension change, Dc, we may also con-
clude that it would be necessary to devise an experimental system that

FIGURE 9 Precision of the surface tension measurement, Dc, as a function of
the maximum perturbation length, k, present on a sessile drop with initial
apex curvature B0.
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is eight times as sensitive to drop edge profile coordinate positions when
using a small-angle sessile drop (hl � p=18) instead of a large-angle sess-
ile drop (hl > 2=3p; see Figure 10). When B0 is not fixed but the dimen-
sionless arc-length point is fixed, say at a value ŝsfinal ¼ 0:1, the f factor
changes. For example, when B0¼5 then f ¼0:22, whereas when B0¼0:8
then f ¼0:96.

These considerations would seem to imply that we may use keff as a
simple variable to show the relationship between the surface tension
change or precision, Dc, the maximum perturbation length, kmax, and
the drop shape, B0.

CRITERION FOR EVALUATING THE PRECISION OF THE
OPTICAL SYSTEM FOR THE MEASUREMENT OF SURFACE
TENSION

When we speak about an experimental system or digital vision sys-
tem with specified surface tension precision, there are two questions
that must be considered: (1) what is the surface tension precision
level for a particular experimental system, e.g., a vision system;
and (2) the inverse—if we require a certain surface tension pre-
cision, how do we select various components to achieve suitable
parameters and satisfy the requirement that Dc be sufficiently
small?

Recently, digital image technology has become very important in
the study of interfacial tensions. In this section, we develop a criterion
that may be used to assess the relationship between the various para-
meters of a vision system, such as its magnification, pixel size and
CCD sensor array, etc., and the level of the surface tension precision.
Five possible situations arise in the development of a vision systems.

FIGURE 10 Illustration of how the effective normal perturbation, keff , is
changed with contact angle, hl, or final arc length, sfinal, position on a sessile
drop. For example, in this sketch (not to scale), keff ðhl � 1

18 pÞ is about
1
18 � keff ðhl > 2

3pÞ when B0 ¼ 2.
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They are as follows:

1. Situation 1: If we know the requirement for surface tension precision,
Dcð Þreq, and the drop information, such as the maximum size of the
drop, 2Xmax, and either the contact angle hl or sfinal, then we can
determine the CCD sensor parameters: P (pixel size), N (area array
size), and the magnification of optical lens, M, to achieve Dcð Þreq.

2. Situation 2: If we know the camera information, P and N, the mag-
nification of the optical lens,M, the drop information, such as 2Xmax

and either hl or sfinal, then we can determine the best surface
tension precision, Dc, that is theoretically possible.

3. Situation 3: If we know the camera information, P and N, and the
requirement, ðDcÞreq, then we can select the magnification of optical
lens, M, to satisfy the surface tension precision, ðDcÞreq.

4. Situation 4: If we know the camera information, P and N, and the
requirement, ðDcÞreq, then we can select the approximate drop size
range to use so as to satisfy this surface tension requirement.

5. Situation 5: If we know the magnification of the optical lens, M, the
drop shape and the surface tension precision requirement, ðDcÞreq,
then we can select the CCD camera parameters, P and N, to
achieve ðDcÞreq.

An algorithm is provided for experimental situations 1 and 4 to assist
readers when using the criterion to select parameters of a vision system
to meet their requirements and to estimate the level of surface tension
precision that is possible. Practical examples (based on a pure water
sessile drop) are provided to illustrate the method and design procedure.
There are six related parameters that determine surface tension:

1. The drop shape information: 2Xmax, hl, or sfinal. Variable 2Xmax is
the maximum potential length for the drop. It is anticipated that
a sessile drop will have its maximum length in the horizontal direc-
tion (perpendicular to the gravitational field vector), while a pen-
dant drop will have its maximum length in the vertical direction
(parallel to the gravitational field vector). In addition, we need an
estimate for either the contact angle, hl, or the maximum axisym-
metric arc-length distance, sfinal, as measured from the apex origin
(at the top of a sessile drop and bottom of a pendant drop).

2. The level of surface tension precision that is required, ðDcÞreq.
3. The magnification of the optical lens system, M.
4. CCD sensor parameters, P and N, where P represents the

maximum physical pixel size for a CCD camera with pixel dimen-
sions P1 � P2, such that P ¼ maxðP1;P2Þ. The variable N represents
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the minimum number of pixels in either row or column of the CCD
area array of dimension N1 �N2, such that N ¼ minðN1; N2Þ.

5. Drop edge precision, �Nvj j, in units of pixels.
6. The perturbation length distribution, k, and the f factor to charac-

terize the extent of the distribution since hl < p (or ŝs < 1) in most
cases. In the situation considered below, we set keff to the largest
effective maximum using the relation keff ¼ fkmax. SI units are
meters for both kmax and keff .

The precision of a vision system can be described by the following
criterion:

Nc ¼
keffM

P
; ð33Þ

where the lateral or transverse magnification, M, is defined by the
ratio [24]

M ¼ Image Size/Object Size ¼ PN

2Xmax
; ð34Þ

and Nc is one criterion for establishing the precision of the surface ten-
sion (discussed below). After substituting Equation (34) into Equation
(33), we obtain

Nc ¼
keffN
2Xmax

: ð35Þ

Thus, if the precision of the drop’s edge is given as �Nvj j, then one
possible criterion for evaluating the precision of the optical system
for a surface tension measurement will be

Nc � �Nvj j: ð36Þ

DISCUSSION OF CRITERION

Aswe know, a CCD area array camera has a photosensitive surface com-
posed of tiny light sensitive regions called pixels. These pixels may be
square (P1 ¼ P2) or they may have an aspect ratio P1=P2 that is not
equal to unity. Inexpensive and common CCD cameras have area arrays
of 640 pixels by 480 pixels with a typical pixel size of 13mm. Cameras
with greater resolution are possible and many research level cameras
have array sizes of 4K by 4K with individual pixels around 6.5mm.
An individual pixel is the smallest unit of resolution on a CCD array
and all images recorded by the CCD camera are binned into a two
dimensional array of pixels. The determination of the edge of a drop is
achieved subject to this pixel array and the precision to which the pixels
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permit the edge to be positioned. In many cases, the drop’s edge crosses
several pixels and the edge is set as the location (or pixel) closest to the
point were the light intensity gradient is a maximum. While some
authors have suggested that the intensity information can be used to
achieve sub-pixel resolution, we feel that it is more prudent to set the
lower limit of resolution at one pixel. During image capture by the
CCD camera, frame grabber, etc. every component of vision system
may introduce distortions into image. In general, the edge detection pre-
cision, �Nvjj , will be influenced by many complicated effects and para-
meter �Nvjj must include all the errors for every component of the
vision system. Possible system error sources include: (1) software sub-
system (including errors from the operating system and related software
and from the edge detection algorithms used by image processing soft-
ware); (2) optical subsystem (including lens distortion, blur, blooming,
CCD sensor and random noise, aspect ratio, and scaling); (3) vibration
control; (4) handling and position control (including leveling and vertical
misalignment of the camera); (5) precision of the frame grabber subas-
sembly; (6) characteristics of the lighting subassembly (including uni-
formity of the source). Thus, it will be assumed that min( �Nvjj ) ¼ 1,
where �Nvjj is the detectable edge precision in number of pixels for
the vision system. If the precision to which the edge of a drop can be esti-
mated is 2 pixels, thenwe setmin ( �Nvjj ) ¼ 2 pixels as the vision system
position uncertainty in pixels. The criterion, Nc, for evaluating the pre-
cision of the optical system for a surface tension measurement, will then
be determined by the requirement that Nc � �Nvj j for all possible com-
binations of P, N, M, ðDcÞreq, and drop shape.

We may understand the parameter Nc in a physical sense by con-
sidering the ratio keffM=P of Equation (33) when M ¼ 1 (no magnifi-
cation) and the total vision system error is min( �Nvjj ) ¼ 1 pixel. In
this situation, Nc ¼ keff =P. Recognizing that the smallest CCD unit
in the sensor array is a pixel of size P, we conclude that the optical sys-
tem will not distinguish any dimension smaller than one pixel and
that the criterion for detecting a perturbation of the drop’s edge must
be keff =P � 1 or Nc � 1: If keff =P < 1, then the vision system will not
sense the perturbation or change to the drop’s edge. The following sec-
tion provides a few concrete situations that mimic experimental situa-
tions and the analysis algorithm for each situation.

SITUATION 1

If we know the requirement for surface tension precision, dcð Þreq, and
the drop shape information, such as the maximum size of the drop
2Xmax and either hl or sfinal, then we can determine the CCD sensor
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parameters, P and N, and the magnification of optical lens M to
achieve dcð Þreq. We proceed as follows:
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Example 1
If we know the surface tension precision requirement

ðDcÞreq � 0:1 mJ=m2, the drop shape information 2Xmax � 8mm
with ŝsfinal ¼ 1 (physically, this means a contact angle of hl ¼ p),
and an edge precision of �Nvj j ¼ 3, then we can determine para-
meters of the optical CCD camera system—that is, P, N, and M—as
follows:

Step 1. Based on 2Xmax � 8mm, we estimate B0 ¼ 2.
Step 2. Based on Figure 9, for given Dc and B0, obtain kmax ¼

3:46� 10�5 m.
Step 3. Based on Figure 3 with ŝs ¼ 1 given, we obtain f ¼ max½k̂k� = 1,

so that

keff ¼ fkmax ¼ 3:46� 10�5 m:

Step 4. Using Equations (35) and (36) we obtain

N � 2Xmax

keff
� �Nvj j � 690:

Step 5. Using Equation (34) and the above relation we obtain

M � P

keff
� �Nvj j;

and the result M � 0:87 for the most common pixel size
P � 10 mm.

If P � 20 mm, then the magnification must be increased to
M � 1:73.

In conclusion, a surface tension precision of ðDcÞreq � 0:1mJ=m2 is
possible for a drop with a maximum size of 2Xmax � 8mm when the
uncertainty is �Nvj j ¼ 3 pixels, provided the magnification M � 0:87
and the CCD camera has both array dimension greater than 690 pixels
and its pixel size is P � 10 mm.

SITUATION 4

If given camera information P and N, and surface tension
requirement ðdcÞreq, then we can select the approximate drop size
necessary to satisfy the surface tension precision requirement ðdcÞreq
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as follows:
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Example 2
If the camera information is already known—for example,

P ¼ 10mm and N ¼ 500, with the requirement for surface tension
precision set at ðDcÞreq � 0:1mJ=m2, and initial drop shape infor-
mation of, 2Xmax � 8mm; ŝsfinal ¼ 0:14 ðhl ¼ 100Þ for a sessile drop,
and the precision of the vision system is estimated as �Nvj j ¼ 2, then
we may determine the parameters of the optical system, that is, M,
as follows:

Step 1. Based on 2Xmax � 8mm, we estimate B0 ¼ 2.
Step 2. Using Equations (35) and (36), we obtain the estimate

keff �
2Xmax �Nvj j

N
� 3:2� 10�5 m:

Step 3. Based on Figure 3, given ŝsfinal ¼ 0:14, we obtain f ¼
max½k̂k� ¼ 0.485, so

kmax ¼
keff
f

¼ 6:6� 10�5 m:

Step 4. Based on Figure 9, for given kmax and B0, we obtain the
inequality Dc > 0:1mJ=m2 > ðDcÞreq, which indicates that this
CCD vision system will not be able to deliver the required surface
tension precision; namely, Dc � 0:1mJ=m2. One may see why this
occurs by using the criterion. From Figure 9, if we required
ðDcÞreq � 0:1mJ=m2 when B0 ¼ 2, then kmax � 3:46� 10�5 m, so
the effective value is keff ¼ fkmax ¼ 1:68� 10�5 m, which is smaller
than the value estimated above and is thus not discernible. If we
use Equations (35) and (36), then we can obtain an estimate of
the minimum CCD array size necessary to achieve the required sur-
face tension precision as

* N � 2Xmax

keff
� �Nvj j � 480 �Nvj j then N � 960; when �Nvj j ¼ 2:

Consequently, a digital CCD camera with an array dimension of
just 500 pixels is too coarse to permit surface tension measurements
at the level of precision required. One possible solution is to increase
N to a value above 1000. For example, if we repeat the previous Steps
1 to 4 with N ¼ 1200 we obtain

keff �
2Xmax �Nvj j

N
� 1:33� 10�5 m;
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whereupon

kmax ¼
keff
f

¼ 2:74� 10�5 m:

Thus, based on Figure 9, for calculated kmax ¼
2:74� 10�5 m � 3:45� 10�5 and B0 ¼ 2, we obtain
Dc < 0:1 ¼ mJ=m2ðDcÞreq, which satisfies the surface tension req-
uirement. For this N ¼ 1200 camera situation, the magnification M
will be

M � P

keff
� �Nvj j � 1:5:

Another possible solution is to change the final arc-length position
of the pendant drop or the contact angle of the sessile drop. This alter-
native is more difficult to achieve in most practical situations but is
included here to illustrate the effect of the f parameter. If given
ŝsfinal ¼ 0:56½hl ¼ 50� for a sessile drop, then f ¼ max½k̂k� ¼ 0.92 and
the effective length changes to

keff �
2Xmax �Nvj j

N
� 3:2� 10�5 m;

with

kmax ¼
keff
f

¼ 3:48� 10�5 m:

Using Figure 9, for kmax ¼ 3:48� 10�5 m and B0 ¼ 2, we obtain a Dc
that is very close to 0:1mJ=m2 ¼ ðDcÞreq because the criterion on
kmax for Dc � 0:1mJ=m2 is 3:46� 10�5 m. Thus, the minimum CCD
array size, N, can be estimated as

N � 2Xmax

keff
� �Nvj j ¼ 500;

and a CCD camera with a minimum array of 500 pixels will be able to
achieve surface tension measurements at the precision
Dc � 0:1mJ=m2 when the pixel uncertainty is �Nvj j ¼ 2 pixels. Subse-
quently, the resulting best magnification can be estimated as

M � P

keff
� �Nvj j � 0:63:

If we improve the vision system precision �Nvj j to one pixel from two,
then
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N ¼ 500;

keff �
2Xmax �Nvj j

N
� 1:6� 10�5 m;

kmax ¼ keff =f ¼ 3:3� 10�5 m:

Thus, based on Figure 9, for given kmax ¼ 3:3� 10�5 m � 3:45� 10�5

and B0 ¼ 2, we obtain Dc < 0:1mJ=m2 ¼ ðDcÞreq, which satisfies the
surface tension precision requirement.

Example 3
If the camera information is already known, for example, P ¼ 10mm

and N ¼ 1200, with the surface tension precision requirement set at
ðDcÞreq � 0:01mJ=m2, information on the drop shape given as
2Xmax � 8mm; ŝsfinal ¼ 0:27 ðhl � 30Þ for a sessile drop, and the pre-
cision of the vision system set at �Nvj j ¼ 2 pixels, then we can deter-
mine the parameters of the optical system as follows:

Step 1. Based on 2Xmax � 8mm, we estimate B0 ¼ 2.
Step 2. Using Equations (35) and (36) we obtain

keff �
2Xmax �Nvj j

N
� 1:33� 10�5 m:

Step 3. Based on Figure 3, if given ŝs ¼ 0:27, we obtain f ¼
max½k̂k� ¼ 0.6, so that

kmax ¼
keff
f

¼ 2:22� 10�5 m:

Step 4. Based on Figure 9, for given kmax and B0, we obtain the
inequality Dc > 0:01mJ=m2 ¼ ðDcÞreq, which indicates that this sys-
tem will not satisfy the criterion because the criterion for kmax at the
surface tension precision Dc � 0:1mJ=m2 is the smaller number
7:0� 10�6 m.

One solution is to determine the minimum CCD camera N value
that would be necessary to achieve this surface tension precision.
Using Figure 9 for the given Dc and B0 of Example 2, we obtain
kmax ¼ 7� 10�6 m (as given above) and

keff ¼ fkmax ¼ 4:2� 10�6 m:
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Finally, we use Equations (35) and (36) to estimate this array size
value as

N � 2Xmax

keff
� �Nvj j ¼ 3800;

which indicates that a CCD camera with N ¼ 1200 is too small to
satisfy the criterion on the surface tension precision when �Nvj j ¼ 2
pixels. In the current CCD sensor market, a large CCD sensor array
of this size is expensive. To achieve even higher surface tension preci-
sions; that is, for ðDcÞreq � 0:01mJ=m2, one possible solution is to
reduce �Nvj j. For example, when �Nvj j ¼ 1, the criterion for N is
reduced from N � 3800 to N � 2000, and it is possible to get a
2K � 2K CCD sensor array more easily. At subpixel edge detection
resolutions such as �Nvj j ¼ 0:5, the criterion for N is further reduced
to N � 1000. If we consider a 2K � 2K CCD sensor array with
�Nvj j ¼ 1, then based on Equations (35) and (36) we obtain

keff �
2Xmax �Nvj j

N
¼ 4:0� 10�6 m;

M � P

keff
� �Nvj j � 2:5

as the required magnification that is necessary to achieve the surface
tension precision. The simple conclusion is that the required surface
tension precision influences the parameters of the vision system dra-
matically.

CONCLUSIONS

The concept of a normal perturbation length distribution,
k̂k ¼ k̂k B0; c; h; or ŝsð Þ was developed to relate experimental uncertain-
ties to the surface tension precision of any software algorithm that
uses the drop’s edge profile to estimate the surface tension. This nor-
mal perturbation distribution is strongly influenced by the drop
shape; that is, the initial B0 value for the drop and the final arc-
length position, sfinal, or tuning angle, h. Based on this normal per-
turbation length distribution, several parameters were considered
when evaluating the precision of surface tension values obtained
for axisymmetric drop systems using a digital vision system and
the ADSA�P software. The parameters were the drop shape infor-
mation, Xmax, hl, or sfinal, the level of surface tension precision that
is required, ðDcÞreq, the magnification of the optical lens system, M,
the CCD sensor parameters, P (pixel size) and N (area array size),
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the drop edge precision, �Nvj j, and the perturbation length distri-
bution, k. Using the criterion in Equation (36) and the definitions
in Equations (33) and (34), we can either estimate the surface ten-
sion precision level for a particular system or we can select various
system components to achieve suitable parameters and satisfy a pre-
defined surface tension accuracy ðDcÞreq.
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